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Homological algebra solutions Week 7

o We will prove (a) = (b) = (¢) = (a).
= (b): Let A be a left R-module and P, — A a projective resolution of
A. By definition the complex

o= Pra> PP+ A—0
is exact, so by flatness of B the tensored complex
(Pb@B)=--—>+P,®B—-P®@B—P,®B

is exact as well. It follows that the homology groups of this
complex are zero and so Tor’*(A, B) = H,,(P, ® B) = 0 for every
n > 0.

= (c¢): immediate.

= (a): Let 0 - M; — My — M3 — 0 be an exact sequence of R-
modules and consider its associated long exact sequence (Tore(—, B)
is a homological J-functor)

-+ = Tor1(M3,B) > M1 ®B - Ms®B — M3 ® B — 0

where we used that Torg(A, B) = A®B for all A. Since Tory (M3, B) =
0 by hypothesis, the functor — ® B is exact, as desired.

e Using that Tore(M, —) = Le(M ® —)(—) and the long exact sequence
for this homological d-functor associated to the mentioned short exact
sequence, we obtain directly from the first part of the exercise that
0 — Tor;(M, B) — 0 is an exact sequence for all R-module M, i.e.
Tory (M, B) = 0 for all M. We conclude by the first part.

Let 0 - M — P — A — 0 be a short exact sequence where P is F-acyclic.

(a) Using the long exact sequence for LoF associated to the above short
exact sequence, using that L,F(P) = 0 for all n > 0 and that
LoF(B) = F(B), yields directly the statement.

(b) Consider the exact sequence
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and split it into short exact sequences
0—>Kj—>Pj£)Kj,1—>0 (2)

for all 0 < j < 'm, where K; = ker f; = imf;1. Note that K_; = A
and K,, = M,,. Using this and the previous point, we obtain by
induction that

LZJ:(A) = Li_o_lf(Kg) = Li—l—lf(Kl) = ...
= Li—m—IF(Km) = Li—m—l]:(Mm)

for i > m+ 2, as desired. When i = m + 1 we use the same sequence
of isomorphisms, but use the previous point in the last step to get:

L1 F(A) = 2 L1 F(Kpo) =ker(F(My,) = F(Pn))-

(¢) Let Py — A be an F-acyclic resolution of A. Split this exact sequence
in short exact sequences of the form (2) for all j > 0 (with the same
notations). For i > 1, let m =i — 2 and set M,,, = M;_o = K;_o =
ker f;_o and consider the exact sequence (1). Applying the previous
point yields that

L, F(A) 2 L1 F(K;—2) =ker(FK;—1 — FPi_1) (3)
Since F is right exact it preserves cokernels, hence we obtain that
FK;—1 = F(imf;) =2 F(P;/ ker f;) = F(P;/imf; 1)
= F(cokerfit1) = coker(F fit1)
Continuing the sequence (3) of isomorphisms, it follows that
L;F(A) = ker (FP; /im(F fiy1) = FPi—1) = H;(FP,)
as desired.

3. We use induction to prove that Tor, (A, B) = H,(F ® B) for all n. For
n =0, we have that F1 ® B - F; ® B— A® B — 0 is exact since ®B is
right exact. Therefore we have that

Torg(A, B) = A® B = (Fy® B)/Im(F, ® B) = Hy(F @ B)

For n = 1, let Ky := Ker(Fy — A) and consider the following exact
sequences

0—-Ky—Fy—A—0 (4)
Fy - F, > Ky—0 (5)



4.

Using the long exact sequence for Ls(— ® B) on the short exact sequence
(4) and using that Tor; (Fp, B) = 0 by the first exercise, we have that

Torl(A,B) = KeT‘(K() ® B — Fy® B).

Using that the image of (5) under the functor — ® B is still exact, the
right hand side of the above equation is

Ker(Fl ®B/Im(F2 ®B) — Fo ®B) = Hl(F. ®B)

as desired. For n > 2 notice that Fe41 — Ky is a flat resolution of Kj.
Hence by induction and using the dimension shifting exercise on (4) (this
makes sense since Fy is flat, thus (— ® B)-acyclic by the first exercise) we
find that

TOI‘n(A, B) = Ln(— ®R B)(A) = Ln—l(_ ®R B)(KO)
= TOI‘n_l(K(), B) = Hn—l(Fo+1 ® B)
— H,(F. ® B)

(a) Since Cp,4 = 0 whenever ¢ < 0 we have isomorphisms at each level

Tot!l(C),, = [ [ Crge = [ 2/42

q=>0 q=>0

Through these isomorphisms, the differentials at each level are all the
same and are given by

(aq)qzo — (2aq + 2aq+1)q20.

Let us show that im(d) =[] >, 2Z/4Z. Clearly the left hand side is
included in the right hand side. Now let (aq)q>0 € [ >0 2Z/4Z. We
can build (bg)s>0 inductively with ones and zeros by setting by = 4
and

_ 0 if Qg—1 = bq,1 =0 or (aq,1 =2A bq,1 = 1),
T 1 if(ag1 =0Aby1 =1)or (ag_1 =2Ab, 1 =0)

This element is mapped to (aq)q>0 by construction which shows the
hint.

Moreover we can easily observe that (aq)s>0 is a cycle if and only if it
is a boundary (aq € {0,2} for all ¢) or if it is of the form a, € {1, 3}
for all q. Since any two cycles that both fall in the second case
differ by a boundary (an element of [][2Z/47Z), we obtain that the
quotient ker(d)/im(d) = Ho(Totl1(C)) has two classes (generated by
a boundary and by (1,1,...) for example), i.e. it is isomorphic to
7./27.



(b)

Since the rows of C' are exact, the acyclic assembly lemma shows
that that T'ot®(C) is acyclic. Another way of seeing this directly is
by observing that the cycles in TotII(C) are either boundaries, either
sequences of elements in {1,3}. Since the latter are not elements of
the direct product total complex T'or®(C), the boundaries are equal
to the cycles.

The same formulas hold in this case, except that the products are
indexed by ¢ € Z instead of positive integers. Again the element
x=(..,1,1,1,...) is a cycle, but can’t be a boundary since those
are precisely [[, 27Z/4Z. Hence the total complex of D is not acyclic.
Moreover there is a chain map TotlI(D) — TotIl(C) given at each
level by (aq)qez — (aq)g>0. It induces a surjective map on the 0-th
homology groups

Ho(Totl1(D)) — Hy(Totll(C)) = 7/22.

Indeed, the class of the cycle (1)4ez is mapped to the class of the
cycle (1)4>0, which corresponds to the non-trivial element of Z/2Z.
Lastly, the element (aq)qez defined by a, = 0 for all ¢ # 0 and
ag = 2 is a cycle, but can’t be a boundary. The only preimage of such
an element in Tot!I(D) are of the form (..., bs, by, b1,0,0,0,...) or
(...,0,0,0,b0,b_1.b_5,...) for b; € {1,3}. Those possible elements
are not in Tot®(D), so (aq) is not a boundary and the homology
groups are non trivial.



