
Homological algebra solutions Week 7

1.

• We will prove (a) =⇒ (b) =⇒ (c) =⇒ (a).

(a) =⇒ (b): Let A be a left R-module and P• → A a projective resolution of
A. By definition the complex

· · · → P2 → P1 → P0 → A → 0

is exact, so by flatness of B the tensored complex

(P• ⊗B) = · · · → P2 ⊗B → P1 ⊗B → P0 ⊗B

is exact as well. It follows that the homology groups of this
complex are zero and so TorRn (A,B) = Hn(P•⊗B) = 0 for every
n > 0.

(b) =⇒ (c): immediate.

(c) =⇒ (a): Let 0 → M1 → M2 → M3 → 0 be an exact sequence of R-
modules and consider its associated long exact sequence (Tor•(−, B)
is a homological δ-functor)

· · · → Tor1(M3, B) → M1 ⊗B → M2 ⊗B → M3 ⊗B → 0

where we used that Tor0(A,B) = A⊗B for allA. Since Tor1(M3, B) =
0 by hypothesis, the functor −⊗B is exact, as desired.

• Using that Tor•(M,−) ∼= L•(M⊗−)(−) and the long exact sequence
for this homological δ-functor associated to the mentioned short exact
sequence, we obtain directly from the first part of the exercise that
0 → Tor1(M,B) → 0 is an exact sequence for all R-module M , i.e.
Tor1(M,B) = 0 for all M . We conclude by the first part.

2. Let 0 → M → P → A → 0 be a short exact sequence where P is F-acyclic.

(a) Using the long exact sequence for L•F associated to the above short
exact sequence, using that LnF(P ) = 0 for all n > 0 and that
L0F(B) = F(B), yields directly the statement.

(b) Consider the exact sequence

0 → Mm
fm+1−−−→ Pm

fm−−→ Pm−1
fm−1−−−→ · · · f1−→ P0

f0−→ A
f−1−−→ 0 (1)
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and split it into short exact sequences

0 → Kj → Pj
fj−→ Kj−1 → 0 (2)

for all 0 ≤ j ≤ m, where Kj = ker fj = imfj+1. Note that K−1 = A
and Km = Mm. Using this and the previous point, we obtain by
induction that

LiF(A) ∼= Li−0−1F(K0) ∼= Li−1−1F(K1) ∼= . . .
∼= Li−m−1F(Km) = Li−m−1F(Mm)

for i ≥ m+2, as desired. When i = m+1 we use the same sequence
of isomorphisms, but use the previous point in the last step to get:

Lm+1F(A) ∼= · · · ∼= L1F(Km−1) = ker(F(Mm) → F(Pm)).

(c) Let P• → A be an F-acyclic resolution of A. Split this exact sequence
in short exact sequences of the form (2) for all j ≥ 0 (with the same
notations). For i ≥ 1, let m = i − 2 and set Mm = Mi−2 = Ki−2 =
ker fi−2 and consider the exact sequence (1). Applying the previous
point yields that

LiF(A) ∼= L1F(Ki−2) = ker(FKi−1 → FPi−1) (3)

Since F is right exact it preserves cokernels, hence we obtain that

FKi−1 = F(imfi) ∼= F(Pi/ ker fi) = F(Pi/imfi+1)

= F(cokerfi+1) ∼= coker(Ffi+1)

Continuing the sequence (3) of isomorphisms, it follows that

LiF(A) ∼= ker
(
FPi/im(Ffi+1) → FPi−1

) ∼= Hi(FP•)

as desired.

3. We use induction to prove that Torn(A,B) ∼= Hn(F ⊗ B) for all n. For
n = 0, we have that F1 ⊗B → F0 ⊗B → A⊗B → 0 is exact since ⊗B is
right exact. Therefore we have that

Tor0(A,B) = A⊗B ∼= (F0 ⊗B)/Im(F1 ⊗B) = H0(F ⊗B)

For n = 1, let K0 := Ker(F0 → A) and consider the following exact
sequences

0 →K0 → F0 → A → 0 (4)

F2 → F1 → K0 → 0 (5)
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Using the long exact sequence for L•(−⊗B) on the short exact sequence
(4) and using that Tor1(F0, B) = 0 by the first exercise, we have that

Tor1(A,B) ∼= Ker(K0 ⊗B → F0 ⊗B).

Using that the image of (5) under the functor − ⊗ B is still exact, the
right hand side of the above equation is

Ker(F1 ⊗B/Im(F2 ⊗B) → F0 ⊗B) = H1(F• ⊗B)

as desired. For n ≥ 2 notice that F•+1 → K0 is a flat resolution of K0.
Hence by induction and using the dimension shifting exercise on (4) (this
makes sense since F0 is flat, thus (−⊗B)-acyclic by the first exercise) we
find that

Torn(A,B) = Ln(−⊗R B)(A) ∼= Ln−1(−⊗R B)(K0)

= Torn−1(K0, B) = Hn−1(F•+1 ⊗B)

= Hn(F• ⊗B)

4. (a) Since Cp,q = 0 whenever q < 0 we have isomorphisms at each level

Tot
∏
(C)n =

∏
q≥0

Cn−q,q
∼=

∏
q≥0

Z/4Z

Through these isomorphisms, the differentials at each level are all the
same and are given by(

aq
)
q≥0

7→
(
2aq + 2aq+1

)
q≥0

.

Let us show that im(d) =
∏

q≥0 2Z/4Z. Clearly the left hand side is
included in the right hand side. Now let (aq)q≥0 ∈

∏
q≥0 2Z/4Z. We

can build (bq)q≥0 inductively with ones and zeros by setting b0 = a0

2
and

bq =

{
0 if aq−1 = bq−1 = 0 or (aq−1 = 2 ∧ bq−1 = 1);

1 if (aq−1 = 0 ∧ bq−1 = 1) or (aq−1 = 2 ∧ bq−1 = 0)

This element is mapped to (aq)q≥0 by construction which shows the
hint.

Moreover we can easily observe that (aq)q≥0 is a cycle if and only if it
is a boundary (aq ∈ {0, 2} for all q) or if it is of the form aq ∈ {1, 3}
for all q. Since any two cycles that both fall in the second case
differ by a boundary (an element of

∏
2Z/4Z), we obtain that the

quotient ker(d)/im(d) = H0(Tot
∏
(C)) has two classes (generated by

a boundary and by (1, 1, . . .) for example), i.e. it is isomorphic to
Z/2Z.
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(b) Since the rows of C are exact, the acyclic assembly lemma shows
that that Tot⊕(C) is acyclic. Another way of seeing this directly is
by observing that the cycles in Tot

∏
(C) are either boundaries, either

sequences of elements in {1, 3}. Since the latter are not elements of
the direct product total complex Tor⊕(C), the boundaries are equal
to the cycles.

(c) The same formulas hold in this case, except that the products are
indexed by q ∈ Z instead of positive integers. Again the element
x = (. . . , 1, 1, 1, . . .) is a cycle, but can’t be a boundary since those
are precisely

∏
Z 2Z/4Z. Hence the total complex of D is not acyclic.

Moreover there is a chain map Tot
∏
(D) → Tot

∏
(C) given at each

level by (aq)q∈Z 7→ (aq)q≥0. It induces a surjective map on the 0-th
homology groups

H0(Tot
∏
(D)) → H0(Tot

∏
(C)) ∼= Z/2Z.

Indeed, the class of the cycle (1)q∈Z is mapped to the class of the
cycle (1)q≥0, which corresponds to the non-trivial element of Z/2Z.
Lastly, the element (aq)q∈Z defined by aq = 0 for all q ̸= 0 and
a0 = 2 is a cycle, but can’t be a boundary. The only preimage of such
an element in Tot

∏
(D) are of the form (. . . , b3, b2, b1, 0, 0, 0, . . . ) or

(. . . , 0, 0, 0, b0, b−1.b−2, . . .) for bi ∈ {1, 3}. Those possible elements
are not in Tot⊕(D), so (aq) is not a boundary and the homology
groups are non trivial.
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